数学分析2-5

洛必达法则

\(\frac{0}{0}\)

若函数 \(f(x),g(x)\) 满足:

  • \(\lim_{x\to x_0} f(x) = g(x) = 0\)
  • \(f(x),g(x)\) 在单侧去心邻域内可导,且 \(g'(x) \ne 0\)
  • \(\frac{f'(x)}{g'(x)} = a\)\(a\) 是有界实数或无穷大。

那么,\(\frac{f(x)}{g(x)}\) 的单侧极限就是 \(a\)

以右侧极限为例,考虑柯西中值定理:

\[ \exists \xi \in (x_0, x), s.t. \frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)} \]

由于 \(x_0 < \xi < x\)\(\lim x = x_0\),所以 \(\lim \xi = x_0\)。又因为可导必连续,则 \(\frac{f(x_0)}{g(x_0)} = \frac{f'(\xi)}{g'(\xi)}\)

\(\frac{\infty}{\infty}\)

若函数 \(f(x),g(x)\) 满足:

  • \(\lim_{x\to x_0} f(x) = g(x) = \infty\)
  • \(f(x),g(x)\) 在单侧去心邻域内可导,且 \(g'(x) \ne 0\)
  • \(\frac{f'(x)}{g'(x)} = a\)\(a\) 是有界实数或无穷大。

那么,\(\frac{f(x)}{g(x)}\) 的单侧极限就是 \(a\)

以右侧极限为例,考虑 \(\frac{0}{0}\) 型的洛必达法则:

\[ \frac{f(x_0)}{g(x_0)} = \frac{\frac{1}{g(x_0)}}{\frac{1}{f(x_0)}} = \frac{\frac{1}{g^2(x_0)}g'(x_0)}{\frac{1}{f^2(x_0)}f'(x_0)} \]

\(\left(\frac{f(x_0)}{g(x_0)}\right)^{-1} = \frac{g'(x_0)}{f'(x_0)}\),所以 \(\frac{f(x_0)}{g(x_0)} = \frac{f'(x_0)}{g'(x_0)}\)

其他不定式

  • \(0 \cdot \infty = \frac{0}{\frac{1}{\infty}} = \frac{\infty}{\frac{1}{0}}\)
  • \(\infty - \infty = \frac{0-0}{0 \cdot 0}\)
  • \(1^\infty = \exp(\infty \ln 1) = \exp(\infty \cdot 0)\)
  • \(0^0 = \exp(0 \ln 0) = \exp(0 \cdot \infty)\)
  • \(\infty^0 = \exp(0 \ln \infty) = \exp(0 \cdot \infty)\)